Hartshorne 一章, 問題2.14

The Segre Embedding. Let \psi \colon \mathbb{P}^r \times \mathbb{P}^s \to \mathbb{P}^N be the map defined by sending the ordered pair (a_0,\ldots,a_r) \times (b_0,\ldots,b_s) to (\ldots,a_ib_j,\ldots) in lexicographic order, where N = rs + r + s. Note that \psi is well-defined and injective. It is called the Segre embedding. Show that the image of \psi is a subvariety of \mathbb{P}^N.

Proof. Let \mathbb{P}^N have coordinates \{z_{ij}:i=0,\ldots,r,~j=0,\ldots,s\}, and let \mathfrak{a} = \ker(k[\{z_{ij}\}] \to k[x_0,\ldots,x_r,y_0,\ldots,y_s]) where z_{ij} \mapsto x_iy_j. Then, \mathfrak{a} = \langle w_{ij}w_{k\ell} - w_{kj}w_{i\ell}\rangle. We claim \mathrm{Im}\:\psi = Z(\mathfrak{a}). But any P \in \mathrm{Im}\:\psi has coordinates (\ldots,a_ib_j,\ldots), and clearly any f \in \mathfrak{a} vanishes on P, and so \mathrm{Im}\:\psi \subset Z(\mathfrak{a}). Conversely, note that any point P \in Z(\mathfrak{a}) satisfies w_{ij}w_{k\ell} - w_{kj}w_{i\ell}, and if w_{00} \ne 0, say, then setting i=j=0 gives (x,y),~x = (w_{00},\ldots,w_{r0}), y = (w_{00},\ldots,w_{0s}) maps to P.

広告

コメントを残す

以下に詳細を記入するか、アイコンをクリックしてログインしてください。

WordPress.com ロゴ

WordPress.com アカウントを使ってコメントしています。 ログアウト / 変更 )

Twitter 画像

Twitter アカウントを使ってコメントしています。 ログアウト / 変更 )

Facebook の写真

Facebook アカウントを使ってコメントしています。 ログアウト / 変更 )

Google+ フォト

Google+ アカウントを使ってコメントしています。 ログアウト / 変更 )

%s と連携中